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Outline

§ Core features (near completion)
§ OpenMP allocators
§ allocate directive and clause
§ omp_alloc() and omp_free() API routines for C/C++
§ Default allocator
§ declare alloc directive and omp_alloc.h

§ Additional features (less mature)
§ Memory spaces and traits
§ User-defined custom allocators
§ Fallback
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OpenMP Allocators

§ Fundamental concept: object that fulfills allocation requests

§ Initially, choice of predefined allocators only:
§ Default
§ High capacity
§ Constant (read-only)
§ High bandwidth
§ Low latency
§ Team local

§ Mapping to actual system resources by the implementation
§ E.g., may map all or most to DDR
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allocate Directive and Clause

§ Specifies that the OpenMP implementation will perform the 
memory allocation and indicates which allocator to use

§ Directive may be used either by itself or with an associated 
base language allocation statement
§ Syntax: #pragma omp allocate(var-list) \

[allocator(predef-allocator)] 

§ Clause may be used on parallel, task, target, and 
worksharing (e.g., loop) directives

§ deallocate directive for deallocation 
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C/C++ API Routines

§ omp_alloc() call to allocate memory
§ Specify size and which allocator to use

§ omp_free() call to deallocate memory

§ Strong resemblance to malloc() and free()
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Default Allocator

§ Default allocator used when an allocator is not specified on 
an allocation directive, clause, or API routine call

§ Separate target default allocator used only when the 
allocate clause appears on the target directive
§ Allows a different default for non-host allocations

§ API routines: set/get_omp_default_allocator()
and set/get_omp_target_default_allocator()

§ Environment variables: OMP_ALLOCATOR and 
OMP_TARGET_ALLOCATOR
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declare alloc

§ Registers existing allocation functions with OpenMP

§ Specifies how to interpret the behavior of the function, its 
arguments, and its return value:
§ Allocation, reallocation, or deallocation behaviors
§ Size of allocation, pointer to allocation, error code

§ Example:
§ Given the function void* special_alloc(size_t size);

§ #pragma omp declare alloc (special_alloc) \
allocate(omp_return) size(omp_args[0]) 
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omp_alloc.h header file

§ New header file to be delivered by implementations

§ Registers popular allocation functions with OpenMP using 
declare alloc directives:
§ malloc()

§ posix_memalign()

§ calloc()

§ aligned_alloc()

§ realloc()

§ free()
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Future Features: Memory Spaces

§ Define memory spaces based on combinations of traits

§ Memory space traits span various dimensions, for example:
§ Location (core, socket, device)
§ Capacity and page size
§ Permissions (read, write, both)
§ Bandwidth, latency, or capacity

§ Example: device, read-only, low latency memory
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Future Features: Custom Allocators

§ User-defined allocators express desired set of memory space 
traits

§ Implementation finds the memory space that best matches

§ Allocators have traits too: 
§ Alignment
§ Pinning
§ Shared/exclusive thread model
§ Fallback
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Future Features: Fallback

§ Fallback allocator trait specifies what to do when a memory 
request cannot be satisfied

§ Fallback allocator trait options:
§ Return 0
§ Abort the program
§ Delegate to another specified allocator
§ Try in the default memory space
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Other Future Features

§ Better support for C++

§ Explicit optimization for NUMA

§ Resource querying

§ Special code generation, as required on some new memories

§ Static (compile-time) allocator mappings
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